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Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, USA 

Received IO December 1990, in final form 11 February 1991 

Abstract. An exactly salvable deterministic model on a hierarchical lattice is presented for 
the left-sided multifractality ofthe growth probability distribution in a generalized diffusian- 
limited aggregation (q model). The exactly renormalizable growth probability is given by 
a multiplicative process. I t  predicts the tip behaviour (the maximum growth probability is 
a power law) and the fiord behaviour (the minimum growth probability has a logarithmic 
singularity). An analytical form of a 'left-sided' generalized dimension D(q)  is shown 
for any q. For the q model, the minimum growth probability scales as pmin= 
exp[-e, In L-c,(ln L)']. In the limit of 7-0, pmln-L-'. 

The essential properties of kinetic aggregation processes are fully described by the 
growth probability distribution on the perimeter sites (or bonds) of these aggregation 
clusters. The growth probability can be regarded as a measure associated with each 
site (bond). The harmonic measure affords a method of quantitatively characterizing 
the relevant properties of the surfaces of the diffusion-limited aggregation clusters. A 
hierarchy of generalized dimensions D ( q )  is used to characterize the harmonic measure 
THalsey et a/ 1986, Amitrano et a/ 1986, Meakin 1988, Stanley and Ostrowsky 1988, 
Feder 1988, Vicsek 1989, Pietronero 1990). 

Very recently, there has been much discussion of measures for which the partition 
function diverges faster than a power law, for small enough negative q values 
(Blumenfeld and Aharony 1989, Hams and Cohen 1990, Schwaner et a/ 1990, Lee et 
a/ 1990, Mandelbrot et a/ 1990). There exist three recently proposed forms for the 
dependence on M of pmin, the smallest of all the growth probabilities. 

(I) Blumenfeld and Aharony (1989) and Mandelbrot et a/ (1990) proposed that 
pmin decreases exponentially with cluster mass M, 

p,,.(M) =exp(-cM"). ( l a )  

(11) Mandelbrot and Vicsek (1989) and ilarris and Cohen (1990) proposed the 
power-law form < 

where dr is the fractal dimension of DLA. 

They find a surprising result for how pmin depends on cluster mass, 
(111) Schwaner et a/ (1990) carry out simulations for pmin of a typical DLA cluster. 

p,,.(M) =exp[-c(ln MIy] (IC) 

where y = 2. 

0305-4470/91/100555+06$03.50 @ 1991 IOP Publishing Ltd L555 



L556 Letter to the Editor 

Schwarzer ef al(1990) and Lee er al(1990) construct a simple model for the fjord 
structure in DLA which predicts the form (IC) with y = 2. Their model is based on the 
two assumptions of the hie:archical void-channel structure of the fjord. See the review 
paper by Stanley el  a1 (1990) for details of the minimum growth probability and the 
references therein. 

The 'free energy' 7 ( q )  is singular at  q = 0 and fails to be defined for q < 0 because 
of faster decreasing minimum growth probabilities than a power law. Mandelbrot 
ef al called the 'anomalous' multifractal measures 'left-sided' multifractality. They 
introduce and investigate a family of exactly self-similar non-random fractal measures, 
each having stretched exponentially decreasing minimum probabilities. 

In this letter, we present an exactly solvable model for the growth probability 
distribution on the surface of deterministic fractal aggregates on a hierarchical lattice. 
We address the dependence of the minimum growth probability distribution upon the 
parameter q. We show that the model has a 'left-sided' multifractality and the minimum 
growth probability pmin scales as 

pmin=exp[-c, In L - c , ( h ~ L ) ~ l  (2) 
with 

c ,  = [In 2+ln{(5/3)"+(1/6)'}+ q In 3 + ( q  In 2)/2]/In4 

c2=q / (8 in2 )  

where L is the cluster size. In the limit q + 0, the minimum growth probability pmin 
scales as pmin+ L-'. It is shown that the minimum growth probability crosses over 
from pmi,=exp[-c(ln L)'] to pmin= L-l with decreasing q. We obtain the analytical 
form of the 'left-sided multifractality for any W. 

We extend the previous model (Nagatani 1987) to take into account the fjord 
structure. The previous model can predict the tip behaviour (the moment of the growth 
probability has a power law). However, it cannot predict the fjord behaviour (the 
minimum growth probability decreases faster than a power law). We introduce ay 
generator for the fjord structure into the previous model. Our model has no assumption 
for the scaling of the fjord. Only if one mimics the typical fjord structure by a 
deterministic fractal, can one exactly derive the left-sided multifractality of the growth 
probability distribution. Let us construct the deterministic fractal on a hierarchical 
lattice to mimic a typical DLA cluster. In general, the aggregates grown on lattices are 
viewed as a system of superconductor-normal resistor networks for the Laplacian 
growth model. The growth occurs on the perimeter of the aggregate. In the models 
the growth probability pi at the growing perimeter bond i is given by pi = (1,)' where 
I ,  is the local current at  the growth bond i. Our deterministic fractal model is constructed 
by the four types of generators shown in figure l ( b ) ,  (c). ( d )  and (e) indicating, 
respectively, the generators for the superconducting bonds, the normal resistor bonds, 
the fjord bonds, and the tip bonds. Figure l ( a )  shows the initiator. In the figure, the 
superconducting bond, the normal resistor bond, the fjord bond and the tip bond are 
respectively indicated by the thick line, the thin line, the wavy line, and the double 
wavy line. The method of constructing the deterministic fractal on a hierarchical lattice 
proceeds iteratively. The first generation is obtained from the zeroth generation (the 
initiator) by replacing each bond with each generator. The length scale is transformed 
by the factor L, =4. The second generation is obtained from the first generation by 
replacing each bond with each generator. The resultant is scaled up to four times. The 
process is continued ad infinitum. In this way one can obtain the deterministic fractal 
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Figure 1. Initiator and generators for the deterministic fractal model an the hierarchical 
lattice. The superconducting, normal resistor, fiord and tip bands are respectively indicated 
by the bold, light, wavy and double wavy lines. ( 0 )  The initiator. ( b )  The generator for 
the superconducting bands. ( e )  The generator for the normal resistor bonds. ( d )  The 
generator for the fjord. (e) The generator for the tip. 

aggregate on the hierarchical lattice. We note that the number S ( 4 s  S S  16) of 
superconductors within the generator for superconducting bonds (shown in figure 
l(b)) is an adjustable parameter which is self-consistently determined by D(m). The 
growth probability within the generator is determined by both cells' configurations 
and the conductances of the, fjord and tip bonds. The growth probability on the 
deterministic fractal is given by the multiplicative process of each generator's growth 
probability because of the hierarchical structure. This deterministic fractal model is 
exactly renormalizable. 

Consider the conductances between the top and the bottom at the nth generations 
of the tip and the fjord. The conductances of the tip bonds between the ( n  - 1)th and 
the nth generations are related by the recursion relation 

ut,n-l = ( ~ & + 2 f l , , ~ ) / ( &  +3ut,. + 1 ) + 2 ~ , . ~ / ( 3 ~ ~ , ~  + 1) (3) 

where and u , , ~  are the conductances of the tip bonds at the ( n  - 1)th and nth 
generations. Similarly, the conductances of the fjord bonds at the ( n  - 1)th and nth 
generations are related by 

~ f . " - , = 2 ~ ~ , . + 2 ~ f , " / ( 3 ~ f , " + 1 )  : (4) 

where or,"-, and are the conductances of the fjord bonds at the ( n  - 1)th and nth 
generations. The growth probabilities within the generator for the tip at the nth 
generation are given by 

P , , ~ , ,  = iL / (G + i:.2+2i3 
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with 

in,l = 

in., = in.4 = 4 ( 3 ~ t . n  + 1) 

+ ~)(u:,"+~u,.")/[(u,," +2)(& + 3 q .  + I)]  

i . 2  = (6. + 2Ut.Q )/ [ (ut," + 2) (U:." + 3 ut.. + 1 )I 

where p,..,, is the growth probability on the bond i within the generator for the tip at 
the nth generation. The growth probability pr,-,, on the bond I within the generator 
for the Gord at the nth generation is given by 

with 

I",, = b.2 = U?," 

P,.O = iZ/(iZ + i2.J Pr.o= i&/(iL+ i&) (7) 

in.,= in ,4=qn / (3~r , f . n+ l ) .  
The growth probabilities pt.o and pr.o within the initiator are given by 

with 

le,: = iG,?= w : , ~ / ( w ~ , ~ + ~ )  

The partition function is given by the multiplicative process of the generator's growth 
probabilities 

x PP =PPo(2P;l1,1+2P:.I,3)(2P;l2,, + 2 P t , J  . . . (2P;l",,+2P7.,,3) , , , (2P;lNJ + 2p:.,.,1 

+P:o( PZ1.i + PP.1.2 + 2P:I.d p:2,1+ p:2,2 + Zp:,.,) 

. . . (P:",l+P:".2+2P:",3). , . (Pp,N,I +P:N.2+2p?,N,,). (8) 
Here, the system size is given by L =4N. 

lim ur," + m 

For sufficiently large N, 

(9) ,I-0 

lim "-0 U,," + U: (finite value) (10) 

where U? is the fixed point of the recursion relation (3). 
The growth probabilities within the generators approach to the limiting values 

limp,..., = p t l (  = constant value) 

lim P,.".~ = pT2,(= constant value) 

"-0 

" -0  

li2 P , , , ~ = P , , J  = p 3 = p t 4 ) ( =  constant value) 

~ ~ P r . . , , ( = P r , . , 2 ) = P ~ , ( = P ~ ~ ) =  1/2 

~~Pr,",3(=Pxn,d)+o. 

(11) 

The maximum growth probability pmax scales as 

Pmai L '"PtJ ' "4 ,  
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We shall consider the dependence of the minimum growth probability pmin upon the 
system size L. The minimum growth probability pmin is given by the multiplicative 
process of the minimum value of the generator's growth probability 

Pmin=Pr.,,,Pr,2 . , . . .Pr ,n ,3 . . .Pr .~ .3  (13) 

with 

~ r , . , 3 =  (1/3)'/[2(ur..)" +2(1/3)'1 

rr.m-i=2ur,n+2/3 for sufficiently large N. 

The relationship (13) is approximated by 

{(5/3)' +(1/6)"}-N. (14) 
. =2-N3-1N~~n(1+2t. . .+N) 

mm 

We obtain (2) for the minimum growth probab'ility. For q < 0, the partition function 
is undefined in the limit of N+m. 

Forq>O 

(P:P+P:;++P?;) > 2PE. (15) 

Therefore, the partition function for 9 > 0 is given by 

P4 = (P:P + P:; + 2 P m  N. (16) 

Finally, we obtain the following expression of r ( q )  = (4-  l )D(q):  

- (q  - 1)D(q) = I ~ ( P : P + P ~ ~ + ~ P : . ? ) / I ~  4 ( 4  > 0). (17) 

We obtain the analytical form of the 'left-sided' multifractality for any 7 

undefined q'o 
q = o  

equation (17) 9 > 0 .  

Our result (18) is derived exactly analytically. However, in the Lee et ol model (1990), 
the multifractality of the growth probability distribution is obtained from solving 
numerically the Laplace equation. 

Here we give a comment to justify our model. The diamond lattice is not realistic 
for describing a real lattice, but gives the likely behaviour on the lattice. The multifrac- 
tality of the growth probability distribution is not affected qualitatively by the lattice 
type. One can have the advantage of being possible to calculate analytically the growth 
probability. The self-similar structure of the fjord, which is obtained by the use of the 
generator for the fjord (figure l (d)) ,  is similar to the hierarchical model devised by 
Lee ef ol (1990). The deterministic fractal structure for the fjord in our model has an 
infinite hierarchy of voids connected by narrow channels. The narrow channels corre- 
spond to the bonds 1 and 2 in the generator for the fjord (figure l (d)) .  The voids 
correspond to the bonds on the right-hand side in the generator. The concept of open 
voids connected by narrow channels has been supported by visual computer simulation 
of DLA clusters (Lee et al 1990). Very recently, Mandelbrot and Evertsz (1990) showed 
the more qualitative but quite compelling computer simulation results for the fjord 
structure. They found that points of highest and lowest growth probability can lie 
unexpectedly close together, and that the lowest growth probabilities may lie very far 
from the initial seed. In our model, points of highest and lowest growth probability 
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lie in the farthest position and the lowest growth probability lies on the initial seed. 
The fjord structure in our model is not consistent with that of Mandelbrot and Evertsz 
(1990). It will be necessary to improve our model to take into account the finding by 
Mandelbrot and Evertsz (1990). 

In summary, we present a deterministic fractal model to mimic a typical DLA cluster. 
We show that the left-sided multifractality of the growth probability distribution can 
be derived by solving the resistor network for the model exactly. We find that the 
model predicts the tip behaviour (the growth probability can scale for q > 0) and the 
fjord behaviour (the minimum growth probability has a logarithmic singularity). 

The author wishes to thank H Eugene Stanley and Jysoo Lee for especially helpful 
conversations. 
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